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1 Abstract
A Markov chain shows cutoff, if the approximation of the chain’s stationary distribution
moves from “bad” to “good” in a short period of time. In this Bachelor thesis, important
fundamental results about Markov chains are recalled, notions of distance of the chain’s
current distribution to the stationary measure are coined, and the basic theory of mixing
times and cutoff is presented and developed coherently and rigorously.

2 Introduction
In 1981, Persi Diaconis and Mehrdad Shahshahani discovered the cutoff phenomenon, not
yet explicitly naming it, while studying random transpositions on the symmetric group, by
investigating the question, “How many transpositions are needed until the permutation is
close to random?”, in [1, p. 1]. In 1988, P. Diaconis further developed the notion of cutoff,
describing it in [2, p. 81: (8)] as “the existence of sharp phase transition [. . .] cutting
down from 1 to zero in a relatively short time. It would be great to understand if this
usually happens.” In 1996, he published an article about cutoff in finite Markov chains,
in which a formal definition is given. From then to now, numerous papers investigating
cutoff phenomena have been published, multiple definitions are used, and even the idea
of cutoff itself has been generalised to weaker phenomenons like pre-cutoff.

3 Preliminaries
In order to be able to deal with cutoff, we first have to recall some important results
concerning Markov chains.

3.1 Basic Definitions
Definition 3.1. A time homogenous Markov chain is a sequence of random variables
(Xn)n∈N0 in a state space X such that the Markov property is fulfilled, i.e. that for any
x, y ∈ X, for all k ∈ N0 and for any tuple (x0, x1, . . . , xk−1) ⊆ X we have that

P
[
Xk+1 = y |Xk = x, Xi = xi (i ∈ [[0, k − 1]])

]
= P[Xk+1 = y |Xk = x] =: p(x, y).

Markov chains are a very useful and important means of modelling natural processes.
We will denote a time homogeneous Markov chain as a triple (X, P, µ), where X symbolises
the chain’s finite state space, P = [p(x, y)]x,y∈X its transition matrix, and optionally µ its
initial probability distribution. Further, we will write the k-step transition probability for
some x, y ∈ X as pk(x, y). For k ∈ N∗, we will furthermore write the distribution of Xk

contingent on an initial distribution µ as Pkµ. In case that µ = δx is the Dirac measure on
some state x ∈ X (this means that the chain almost surely starts at x), we will denote
this as Pkx = pk(x, ·). Also, we will shorten the notation by defining Pkx(x) := Pkx({x}).
Let us recall some other important generic properties of Markov chains and measures:
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Definition 3.2. A Markov chain (X, P ) is called irreducible if for any two states x, y ∈ X
there exists a path from x to y with non-zero probability, i.e. that there exists some k ∈ N∗
such that pk(x, y) > 0.

Definition 3.3. The period d(x) of a state x ∈ (X, P ) is defined as following: d(x) :=
gcd{n ∈ N∗ : pn(x, x) > 0}. We call the state x aperiodic, if d(x) = 1. The chain is said
to be aperiodic if every state is aperiodic. Given that (X, P ) is irreducible, d = d(x) is
independent of x.

Definition 3.4. We call a chain (X, P ) lazy, if p(x, x) ≥ 1
2 for all x ∈ X.

Lemma 3.5. A lazy Markov chain (X, P ) is aperiodic.

Proof. Let x ∈ X be an arbitrary state. Due to the chain’s laziness, it holds that p(x, x) >
1
2 > 0. Hence, d(x) = gcd{n ∈ N : pn(x, x) > 0} = 1.

Lazy Markov chains are very convenient, since they are always aperiodic. Because of
that, it is often very useful to investigate the lazified Markov chain (X, PL) instead of the
chain (X, P ), where PL := 1

2(P + I). As a convex combination of stochastic matrices, PL
is again stochastic and therefore, the lazified chain is well-defined.

3.2 Existence of the Stationary Distribution
Definition 3.6. A measure µ on X is called stationary or invariant, if µP = µ, i.e. for
all y ∈ X we have ∑x∈X µ(x)p(x, y) = µ(y). A stationary probability distribution, that is
a stationary measure fulfilling µ(X) = 1, is sometimes also called equilibrium measure.

Under relatively general assumptions, Markov chains show convergence to a unique
stationary distribution. For irreducible Markov chains, there is a well-known result for
the existence of a stationary distribution, whose proof can be found in most books about
stochastic processes, for example in [7, p. 201: Thm. 10.25]:

Theorem 3.7. An irreducible Markov chain (X, P ) possesses a stationary distribution
(this is an invariant probability measure) π iff (X, P ) is positive recurrent. In this case,
π(x) = 1

Ex(tx) > 0 for any x ∈ X, where tx := inf {k ∈ N∗ : Xk = x} denotes the first
return time in the state x.

Now we want to directly show the uniqueness of the stationary distribution for irre-
ducible chains:

Theorem 3.8. If a finite, irreducible Markov chain (X, P ) has a stationary distribution
π, then π is unique.

Proof. Let π1 and π2 are two stationary distributions on (X, P ). Because X is finite, we
can choose a minimising state x ∈ X such that x = argminz∈X

π1(z)
π2(z) and we define c := π1(x)

π2(x)
as the minimum value of said expression. Then it holds that

π1(x) = π1(x)
π2(x)π2(x) = cπ2(x). (1)
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Because of the definition of c, π1(z)
π2(z) ≥ c is true for any z ∈ X. This is equivalent to

∀z ∈ X : π1(z) ≥ cπ2(z) (2)

Due to the fact, that the chain is finite and irreducible, we can find some n ∈ N∗ such
that for any x, y ∈ X there exists a k ∈ [[1, n]] with pk(x, y) > 0 Since both measures π1
and π2 are stationary, we have that π1 = P kπ1 and π2 = P kπ2. Hence we have for fixed
k ∈ [[1, n]]:

π1(x) =
∑
z∈X

π1(z)pk(z, x)
(2)
≥ c

∑
z∈X

π2(z)pk(z, x) = cπ2(x) (1)= π1(x)

⇒
∑
z∈X

π1(z)pk(z, x) = c
∑
z∈X

π2(z)pk(z, x).
(3)

All terms in the sum are non-negative, because of this we obtain from (3), that ∀z ∈
X, pk(x, z) > 0 : π1(z) = cπ2(z). By applying this to all k ∈ [[1, n]], we get that ∀z ∈ X :
π1(z) = cπ2(z), and subsequently by summation over all z ∈ X:

1 =
∑
z∈X

π1(z) = c
∑
z∈X

π2(z) = c

This directly implies that for all z ∈ X we have π1(z) = cπ2(z) = π2(z). This is
equivalent to π1 = π2, which is exactly what we wanted to show.

In the next fundamental theorem we will see that positive recurrent, irreducible and
aperiodic Markov chains have very nice properties with respect to the stationary distri-
bution. Therefore, we call chains fulfilling these criteria ergodic.

Theorem 3.9. Let (X, P ) be an ergodic Markov chain with unique stationary distribution
π. Then:

1. For arbitrary x, y ∈ X: limk→∞ p
k(x, y) = π(y).

2. For any initial distribution µ and for any y ∈ X: limk→∞ Pkµ(y) = π(y)

Proof. A proof of 1 can be found in [7, p. 199: Cor. 10.21], so we will only prove statement
2 : Let µ be a distribution on X and let y ∈ X. We observe that Pkµ(y) = µP k(y) =∑
x∈X µ(x)pk(x, y) and taking the limit according to 1 yields

lim
k→∞

Pkµ(y) =
∑
x∈X

µ(x) lim
k→∞

pk(x, y) = π(y)
∑
x∈X

µ(x) = π(y).
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3.3 Stopping Times and Stationary Times
Stationary times are very important for showing cutoff in Markov chains, as we will see
in the following sections of this paper.

Definition 3.10. A sequence (Fn)n∈N∗ of σ-algebras is called a filtration, if Fn ⊆ Fn+1
for any n ∈ N∗.

Definition 3.11. We call a sequence (Xn)n∈N∗ of random variables adapted to a fil-
tration (Fn)n∈N∗ if Xn is Fn-measurable for all n ∈ N∗. Let us define (Hn)n∈N∗ :=(
σ(X0, X1, . . . , Xn)

)
n∈N∗ to be the natural filtration with respect to (Xn)n.

Definition 3.12. A random variable τ which exclusively assumes values in N∗ is called
a stopping time for a filtration (Fn)n∈N∗ if for arbitrary n ∈ N∗ the event {τ = n} ∈ Fn.

Definition 3.13. Let (Xn)n∈N∗ be an ergodic Markov chain adapted to a filtration (Fn)n∈N∗,
with values in X and with stationary distribution π. A stationary time τ for (Xn)n is an
(Fn)n-stopping time with the property, that there exists a x ∈ X such that

∀y ∈ X : Px [Xτ = y] = π(y).

If the stronger condition

Px [τ = n,Xτ = y] = Px [τ = n] π(y)

if fulfilled, i.e. Xτ has distribution π and is independent of τ , we say that τ is a strong
stationary time.

Lemma 3.14. Using the notation of the preceding definition for a strong stationary time
τ , the following equality holds for any n ≥ 0, y ∈ X:

Px [τ ≤ t,Xn = y] = Px [τ ≤ n] π(y).

Proof. The rather short proof is based on [10, p. 78: Rem. 6.8]. Since π is stationary, it
holds for any natural k ≥ 0 that ∑z∈X p

k(z, y)π(z) = π(y), whence

Px [τ ≤ t,Xn = y] =
n∑
s=1

∑
z∈X

Px [τ = s,Xs = z,Xn = y] [str. st.]=
n∑
s=1

Px [τ = s]
∑
z∈X

pn−s(z, y)π(z)

=
n∑
s=1

Px [τ = s] π(y) = Px [τ ≤ s] π(y)

3.4 Eigenvalues of the Transition Matrix
We will first give the definition of eigenvalues and eigenvectors of a Markov chain. Ba-
sically, this is merely the application of the well-known concept of eigenvalues in linear
algebra applied to the chain’s transition matrix. Since we will exclusively work in finite
settings later on, all the common results for eigenvalues and eigenvectors are, of course,
applicable. In the following pages, unless otherwise stated, we will assume (X, P ) to be a
general Markov chain.
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Definition 3.15. Let v : X→ X be a function and λ ∈ C. We call v an eigenfunction or
eigenvector of P with corresponding eigenvalue λ, if

Pv = λv,

with Pv(x) := ∑
y∈X P (x, y)v(y). Also, we define σ(P ) := {λ ∈ C : λ is an eigenvalue of P}.

Lemma 3.16. The following statements are true:

1. If λ is an eigenvalue of P, then |λ| ≤ 1.

2. For irreducible P , the eigenspace associated to eigenvalue 1 is the linear hull L({1}),
where 1 is the vector whose entries are solely 1.

3. If P is both irreducible and aperiodic, then −1 is not an eigenvalue of the chain.

Proof. An outline of the proof can be found in [10, p. 176: Ex. 12.1].

Definition 3.17. The spectral gap of the chain is defined as

γ := 1−max
{
λ : λ ∈ σ(P )

}
.

and the absolute spectral gap as

γ? := 1−max
{
|λ| : λ ∈ σ(P )

}
,

Also, we define the reciprocal of γ? to be the relaxation time of the chain,

trel := 1
γ?
.

Corollary 3.18. In case that the chain is aperiodic and irreducible, γ? > 0 immediately
follows from lemma 3.16.

3.5 Reversibility of Markov Chains
We will see later that a certain class of Markov chains, the so-called reversible chains,
admit very interesting properties with respect to cutoff. Hence, we will now define the
notion of reversibility:

Definition 3.19. A Markov chain (X, P ) is called reversible, if there exists a measure µ
such that for any x, y ∈ X we have µ(x)p(x, y) = µ(y)p(y, x).

Lemma 3.20. A reversible finite chain (X, P ) with respect to a measure µ 6≡ 0 possesses
a stationary distribution π := 1

µ(X)µ.

Proof. Let x ∈ X be arbitrary. It is clear that π is a probability distribution. We obtain

π(x) = 1
µ(X)µ(x)

∑
y∈X

p(x, y)
︸ ︷︷ ︸

=1

(reversibility)= 1
µ(X)

∑
y∈X

µ(y)p(y, x) = 1
µ(X)µP (x) = πP (x).
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4 The Cutoff Phenomenon
From now on, unless otherwise stated, we will always assume that (X, P, µ) is an ergodic
finite Markov chain with its stationary distribution called π. We have already seen in
section 3, that Pkµ(y) converges to π(y) for n→∞.

4.1 Common distances
We want to quantify the distance between Pkµ(y) and π(y). In order to do that, one can
theoretically use any meaningful distance which is defined on the space of signed measures,
i.e. the differences of two ordinary measures. These distances do not necessarily have to
be norms or metrics. In practice, however, there are mostly three types of distances used,
which we will introduce in this subsection.

4.1.1 The `p-Distances

For 1 ≤ p ≤ ∞ we can define a distance induced by the `p-norm:

Definition 4.1. The `p-distance between to probability measures µ and ν on X with respect
to a strictly positive measure π on X, which in our case will always be a chain’s stationary
distribution, is for 1 ≤ p <∞ defined as

‖µ− ν‖p,π :=
∑
x∈X

π(x)1−p|µ(x)− ν(x)|p
 1

p

and for p =∞ as
‖µ− ν‖∞,π := max

x∈X

|µ(x)− ν(x)|
π(x) .

If clear, we will drop π from the notation and simply write ‖µ− ν‖p instead of
‖µ− ν‖p,π. Also, if we just look at the `∞-difference between some probability meas-

ure µ and π with respect to π, we can simplify the term to‖µ− π‖∞ = maxx∈X
∣∣∣∣µ(x)
π(x) − 1

∣∣∣∣.
Cutoff with respect to the `p-distance for 1 < p ≤ ∞ (note that the case p = 1 is ex-
cluded) has some interesting properties for lazy and reversible Markov chains, which are
mentioned in [9, p. 3: Thm. A].

4.1.2 The Total Variation Distance

One of the most natural ways to quantify a distance between two probability measures
is the total variation. Early definitions of cutoff have already been using this norm, see
for example [3] from 1996. Nevertheless, this type of cutoff is still often used in modern
papers regarding cutoff phenomena.

Definition 4.2. Let µ, ν be two probability measures on X. The total variation distance
is defined by

‖µ− ν‖TV := max
A⊆X

∣∣µ(A)− ν(A)
∣∣.
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We will now see, that the total variation distance is closely interwoven with the `1-
norm, which is easier to handle.

Theorem 4.3. Let ν, µ be two distributions on X. Then

1. :‖µ− ν‖TV = 1
2‖µ− ν‖1 = 1

2
∑
x∈X

∣∣µ(x)− ν(x)
∣∣

2. :‖µ− ν‖TV =
∑
x∈X

ν(x)≤µ(x)

(µ(x)− ν(x))

Proof. The proof is based on [10, p. 48: Prop. 4.2]. Define B := {x ∈ X : µ(x)−ν(x) ≥ 0}
and let A ⊆ X. Since 1 = µ(X) = µ(B) + µ(BC) and 1 = ν(X) = ν(B) + ν(BC) we get
µ(B) + µ(BC) = ν(B) + ν(BC) which is equivalent to

µ(B)− ν(B) = ν(BC)− µ(BC). (4)
Also, we have that

µ(A)− ν(A) =µ(A ∩B)− ν(A ∩B) + µ(A ∩BC)− ν(A ∩BC)︸ ︷︷ ︸
≤0

≤ µ(A ∩B)− ν(A ∩B)

≤µ(A ∩B)− ν(A ∩B) + µ(AC ∩B)− ν(AC ∩B)︸ ︷︷ ︸
≥0

= µ(B)− ν(B).

(5)
Analogously, we obtain

ν(A)− µ(A) ≤ ν(BC)− µ(BC) (4)= µ(B)− ν(B). (6)

Note that µ(B)− ν(B) ≥ 0 by definition of B. By this, we get

‖µ− ν‖TV = max
A⊆X

∣∣µ(A)− ν(A)
∣∣ (5)=

∣∣µ(B)− ν(B)
∣∣ = µ(B)−ν(B) =

∑
x∈X

ν(x)≤µ(x)

(µ(x)−ν(x)),

which concludes the proof of 2. Now we prove 1: By the preceding equation, it holds that

‖µ− ν‖TV =µ(B)− ν(B) =
∑ (6)= 1

2[µ(B)− ν(B) + ν(BC)− µ(BC)]

=1
2

∑
x∈B

(µ(x)− ν(x)) +
∑
x∈BC

(ν(x)− µ(x))


=1
2

 ∑
µ(x)−ν(x)≥0

|µ(x)− ν(x)|+
∑

µ(x)−ν(x)<0
|µ(x)− ν(x)|


=1

2
∑
x∈X
|µ(x)− ν(x)| = 1

2‖µ− ν‖L1
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4.1.3 The Separation Distance

Definition 4.4. Let again be µ, ν two probability measures on X. We define the separation
distance between µ and ν as

sep(µ, ν) := max
x∈X

(
1− µ(x)

ν(x)

)

For a strictly positive measure π, sep(µ, π) looks very similar to the simplified expres-
sion of the `∞-distance. But sep(µ, π) is not a metric due to its asymmetry, which also
reflects in its notation.

Using strong stationary times, which were introduced in section 3, we can obtain the
following useful result:

Lemma 4.5. For a chain with strong stationary time τ and arbitrary k ∈ N∗, x ∈ X we
have that

sep(Pkx, π) ≤ Px[τ > k].

Proof. The proof of this lemma is based on [6, p. 17: Lem. 4.1]. For fixed x, y ∈ X we
observe that

Pkx(y) = Px[Xk = y, τ > k] + Px[Xk = y, τ ≤ k] ≥ Px[Xk = y, τ ≤ k]

By this and using the fact that τ is a strong stationary time, it follows that

1− Pkx(y)
π(y) ≤ 1− Px[Xk = y, τ ≤ k]

π(y) = 1− Px[τ ≤ k]π(y)
π(y) = 1− Px[τ ≤ k] = Px[τ > k].

By taking the supremum over all y ∈ X we obtain the inequality.

4.2 Defining Cutoff
Investigating certain sequences of Markov chains, one can observe a sudden decrease of
a distance between Pkµ and the stationary distribution π from approximately 1 to nearly
0 in a short time period. This is called the cutoff phenomenon. Note that the notion of
cutoff is only meaningful for a sequence of chains rather than a single Markov chain.

These sequences (Xk, Pk)k∈N∗ usually have strictly monotonically increasing sizes of
the state spaces Xk, and can, for example, show one of the following properties:

• For any k ∈ N∗, (Xk, Pk) are of the same type with similar state spaces Xk, which are
increasing in size. Notable examples include mixing processes (e.g. riffle shuffle on
k cards) with each state space Xk = Sk being the symmetric group over k elements.

• Proceeding from a sequence (Xk, Pk)k∈N∗ of Markov chains, one can construct an-
other sequence (Yk, Qk)k∈N∗ , with Yk :=

(
X

(1)
k , . . . ,X

(k)
k

)
being the product of k in-

dependent copies (X(i)
k )ki=1 of Xk with Qk((x1, . . . , xk), (y1, . . . , yk)) := ∏k

i=1 pk(xi, yi).
The sequence (Yk, Qk)k is called a sequence of product chains.
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The occurrence of cutoff phenomena is heavily dependent on both the investigated
chains, see for example [9], as well as the distance used to quantify the distribution’s
deviation from the stationary distribution. Hence, general results regarding cutoff are
very difficult to obtain. Due to this, most papers focus on sequences of concrete classes
of Markov chains, where cutoff or non-cutoff can be shown explicitly.

In order to rigorously formalise the notion of cutoff with regard to sequences of Markov
chains, we first need to introduce worst-case distances and mixing times. For the following
definitions we will mostly use the total variation distance or the separation distance.
Analogously, all these notions may as well be defined for different distances, yielding
different types of cutoff.

4.2.1 Worst-Case Distances

Definition 4.6. For k ∈ N∗, the worst-case total variation distance in k is defined as

d(k) := max
x∈X

∥∥∥Pkx − π∥∥∥TV

and for 1 ≤ p ≤ ∞ the worst-case `p-distance in k as

pd(k) := max
x∈X

∥∥∥Pkx − π∥∥∥p .
Note, that d = 1

2 1d. Analogously, we write the worst-case separation distance in k as

s(k) := max
x∈X

sep(Pkx, π).

Also, we define the worst-case starting total variation distance to be

d̄(k) := max
x,y∈X

∥∥∥Pkx − Pky
∥∥∥

TV
.

The following lemma will show us that worst-case total variation distance and worst-
case starting total variation distance are indeed very meaningful and intuitive names for
d(k) respectively d̄(k).

Lemma 4.7. Let us denote the space of all probability measures on X by P(X). Then
the following equalities holds for any k ∈ N∗:

1. supµ∈P(X)

∥∥∥Pkµ − π∥∥∥TV
= d(k)

2. supµ,ν∈P(X)

∥∥∥Pkµ − Pkν
∥∥∥

TV
= d̄(k)

Note that the proof works for any distance on P fulfilling the triangle inequality.

Proof. We only prove 1, since 2 can be proved analogously. Let k ∈ N∗ be arbitrary. We
prove the equality by proving the inequalities ≥ and ≤.

≥: Due to Pkx = Pkδx
with δx denoting the Dirac measure in x, it holds that

d(k) = max
x∈X

∥∥∥Pkx − π∥∥∥TV
= sup

µ∈P
∃x∈X:µ=δx

∥∥∥Pkµ − π∥∥∥TV
≤ sup

µ∈P(X)

∥∥∥Pkµ − π∥∥∥TV

11



≤: Let µ ∈P be arbitrary. We first note that µ = ∑
x∈X µ(x)δx and δxP k = Pkx for any

x ∈ X, as well as ∑x∈X µ(x) = 1. With this and the triangle equality of ‖·‖TV we
get that

∥∥∥Pkµ − π∥∥∥TV
=
∥∥∥µP k − π

∥∥∥
TV

=

∥∥∥∥∥∥
∑
x∈X

µ(x)δxP k − π

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥
∑
x∈X

µ(x)Pkx − π

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥
∑
x∈X

µ(x)Pkx −
∑
x∈X

µ(x)π

∥∥∥∥∥∥
TV

≤
∑
x∈X

µ(x)
∥∥∥Pkx − π∥∥∥TV︸ ︷︷ ︸

≤d(k)

≤ d(k)
∑
x∈X

µ(x) = d(k).

Taking the supremum over all µ ∈ P on both sides of preceding inequation yields
the desired result.

Lemma 4.8. d(k) and d̄(k) are monotonically decreasing functions in k ∈ N∗.

Proof. We first show, that ‖µP − νP‖TV ≤ ‖µ− ν‖TV for fixed µ, ν ∈ P and any
stochastic matrix P over X using the triangle inequality and interchanging order of sum-
mation:

‖µP − νP‖TV = 1
2
∑
x∈X
|µP (x)− νP (x)| = 1

2
∑
x∈X

∣∣∣∣∣∣
∑
y∈X

µ(y)p(y, x)− ν(y)p(y, x)

∣∣∣∣∣∣
≤1

2
∑
x∈X

∑
y∈X
|µ(y)p(y, x)− ν(y)p(y, x)| = 1

2
∑
y∈X
|µ(y)− ν(y)|

∑
x∈X

p(y, x)︸ ︷︷ ︸
=1

=‖µ− ν‖TV .

Taking the supremum over all µ, ν ∈P on both sides yields the result for d̄. Also, it
immediately follows that for a stationary distribution π and for all k ∈ N∗ we have∥∥∥µP k+1 − π

∥∥∥
TV

=
∥∥∥µP k+1 − πP k+1

∥∥∥
TV
≤
∥∥∥µP k − πP k

∥∥∥
TV

=
∥∥∥µP k − π

∥∥∥
TV
.

This time, taking the supremum over µ ∈ P gives us that d(k + 1) ≤ d(k), from which
by induction follows that d is non-increasing.

We will show later, that a meaningful method for proving cutoff is finding upper and
lower bounds for the worst-case distances. Hence, we will now explicitly state important
inequalities regarding them:

Lemma 4.9. The worst-case separation distance, worst-case `p-distance and the worst-
case starting total variation distance are submultiplicative, i.e. for any k, l ∈ N∗ :

1. s(k + l) ≤ s(k)s(l)

2. pd(k + l) ≤ pd(k)pd(l)

3. d̄(k + l) ≤ d̄(k)d̄(l)

12



Proof. A sketch of the proof of 1 can be found in [10, p. 86: Ex. 6.4], 2 is given as an
exercise in [10, p. 59: Lem. 4.18] and 3 is shown in [10, p. 54: Lem. 4.11].

Lemma 4.10. The separation distance sep(k) is non-increasing in k ∈ N∗.

Proof. Let us first note, that for any k ∈ N∗ and µ, ν ∈P,

sep(µ, ν) = 1−min
x∈X

µ(x)
ν(x)︸ ︷︷ ︸
≤1

≤ 1.

The minimum is bounded by 1 from above, because if we assume that minx∈X µ(x)
ν(x) > 1, it

follows that ν < µ on X, whence 1 = ∑
x∈X ν(x) < ∑

x∈X µ(x) = 1, which is a contradiction.
Hence, also s(k) ≤ 1 by definition for all k ∈ N∗. From this and the first point from

lemma 4.9, we obtain that for arbitrary k, l ∈ N∗ with k ≤ l,

s(l) ≤ s(k)s(l − k) ≤ s(k).

Lemma 4.11. The worst-case `p-distances are non-decreasing in p, i.e. for 1 ≤ p ≤ q ≤
∞ and k ∈ N∗,

pd(k) ≤ qd(k).

Proof. The statement can be found without explicit proof in [10, p. 56: (4.37)].

Lemma 4.12. The following two statements are true for any k ∈ N∗:

1.
∥∥∥Pkx − π∥∥∥TV

≤ sep(Pkx, π).

2. d(k) ≤ s(k).

Proof. This short proof is based on [10, p. 80: Lem. 6.16].

1. Let x ∈ X, k ∈ N∗ be arbitrary. Then by (2.) of theorem 4.3 it holds that

∥∥∥Pkx − π∥∥∥TV

(4.3)=
∑
y∈X

Pk
x(y)<π(y)

(π(y)− Pkx(y)) =
∑
y∈X

Pk
x(y)<π(y)

π(y)
1− Pkx(y)

π(y)



≤max
y∈X

1− Pkx(y)
π(y)

 = sep(Pkx, π),

which concludes the proof of 1.

2. By taking the maximum over all x ∈ X on both sides of 1., we obtain the desired
inequation.

13



Lemma 4.13. The following inequalities between the worst-case total variation distance
and the worst-case starting total variation distance hold for any k ∈ N∗:

d(k) ≤ d̄(k) ≤ 2d(t)

Proof. This proof is based on the proof given in [10, p. 53: Lem. 4.10]. We subsequently
show both inequalities:

1. First, fix k ∈ N∗ and x ∈ X and note that due to π = πP , we have π(A) =∑
y∈X π(y)pk(y, A) for any A ⊆ X. Since π is a distribution, ∑y∈X π(y) = 1 holds.

With this and the triangle inequality we get

∣∣∣Pkx(A)− π(A)
∣∣∣ =

∣∣∣∣∣∣
∑
y∈X

(
Pkx(A)− Pky(A)

)∣∣∣∣∣∣ ≤
∑
y∈X

π(y)
∥∥∥Pkx − Pky

∥∥∥
TV
≤ d̄(t)

∑
y∈X

π(y) = d̄(t).

By taking the supremum over all x ∈ X, A ⊆ X on both sides of the inequation we
obtain the desired inequality.

2. Using the triangle inequality, we immediately obtain

d̄(k) = max
x,y∈X

∥∥∥Pkx − Pky
∥∥∥

TV
≤ max

x,y∈X

(∥∥∥Pkx − π∥∥∥TV
+
∥∥∥π − Pky

∥∥∥
TV

)
= 2d(t).

We also get a similar estimate for the inverse direction if the Markov chain is reversible:

Lemma 4.14. In case that the underlying Markov chain is reversible, the following in-
equalities hold:

s(2t) ≤ 1− (1− d̄(t))2 ≤ 2d̄(t) ≤ 4d(t)

Proof. A complete proof of the first inequality can be found in [10, p. 80: Lem. 6.17]. The
latter two are clear by expanding the square and applying lemma 4.13.

4.2.2 Mixing Times

In order to quantify the time after which the chain gets arbitrarily close to equilibrium,
we introduce the so-called mixing times.

Definition 4.15. Let ε > 0 be arbitrary. We define the ε-mixing time with respect to the
total variation distance to be

tmix(ε) := min
{
k ∈ N∗ : d(k) ≤ ε

}
.

Analogously, we define ptmix(ε) to be the ε-mixing time with respect to the `p-norm, and
septmix(ε) to be the separation distance ε-mixing time. In order to shorten the notation,
we set tmix := tmix(1

4) and ptmix := ptmix(1
2). Since tmix = 1tmix and the `p-distances are

submultiplicative by lemma 4.9, these definitions are indeed consistent.

14



tmix(ε) can be interpreted as the smallest time, such that the total variation distance
between Ptmix(ε)

µ and the stationary distribution π is at most ε for any starting distribution
µ.

Lemma 4.16. For any mixing time tmix with respect to a non-increasing worst-case dis-
tance w : N∗ → R+

0 , it holds for any k ∈ N∗ and ε > 0 that

w(k) ≤ ε⇔ tmix(ε) ≤ k.

Proof. We show each implication:

⇒: Let w(k) ≤ ε. From the definition of the mixing time, tmix(ε) = min
{
l ∈ N∗ : w(l) ≤ ε

}
,

it immediately follows that tmix(ε) ≤ k.

⇐: Now, let tmix(ε) ≤ k and we assume that w(k) > ε. Since w is non-increasing, we
obtain that w(tmix(ε)) ≥ w(k) > ε, which contradicts w(tmix(ε)) ≤ ε.

Lemma 4.17. The ε-mixing time is non-increasing in ε. This means that for any 0 <
δ ≤ ε it holds that

tmix(δ) ≥ tmix(ε).

Note that this result is independent of the used worst-case distance.

Proof. Let 0 < δ ≤ ε. For arbitrary c > 0 we define Tc :=
{
k ∈ N∗ : d(k) ≤ c

}
and

observe, that Tδ ⊆ Tε. By definition of the mixing times,

tmix(δ) = minTδ ≥ minTε = tmix(ε).

Lemma 4.18. For any ε > 0 we have tmix(ε) ≤
⌈
log2 ε

−1
⌉
tmix.

Proof. The proof is taken from [10, p. 54: (4.34)]. First, note that due to lem. 4.13 and
the submultiplicativity of d̄ (lem. 4.9) for any k ∈ N∗ we have that

d(ktmix(δ))
4.13
≤ d̄(ktmix(δ))

4.9
≤ d̄(tmix(δ))k

4.13
≤
(
2d(ktmix(δ))

)k = (2δ)k.

If we set δ = 1
4 , we obtain d(ktmix) ≤ 2−k. Now let ε > 0 be arbitrary and choose

the smallest k ∈ N∗ such that 2−k ≤ ε, i.e. k =
⌈
log2 ε

−1
⌉
. Therewith, we have

d
(⌈

log2 ε
−1
⌉
tmix

)
≤ 2−k ≤ ε, which implies tmix(ε) ≤

⌈
log2 ε

−1
⌉
tmix by definition of

the mixing time.
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4.2.3 Cutoff and Pre-Cutoff

We have finally acquired the knowledge necessary to define cutoff. From now on, we will
always consider (Xn, Pn)n∈N∗ to be a sequence of ergodic Markov chains with stationary
distributions πk and ε-mixing times t(n)

mix(ε), t(n)
mix the 1

4 -mixing time and d(n) the worst case
total variation norm of the n-th chain for each n ∈ N∗.

Definition 4.19. We say that this sequence of chains exhibits cutoff, if for any ε ∈ (0, 1)

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

Cutoff has the following equivalent characterisation:

Theorem 4.20. The sequence (Xn, Pn)n∈N∗ has cutoff iff

lim
n→∞

d(n)(ct(n)
mix) =

1, if c ∈ (0, 1)
0, if c > 1

Of course, d(n)(ct(n)
mix)) is only defined for ct(n)

mix ∈ N∗. Also note that c 6= 1, because by
definition d(n)(t(n)

mix) ≤ 1
4 .

Note that this equivalence does hold in any setting, where non-increasing worst-case
distances which are bounded from above by 1 are used, for example, the separation distance
and, of course, the total variation distance, for which the statement is proved explicitly.
For the `p-distances, this theorem is not true without further modifications.

Proof. We subsequently show both implications:

⇒: Assume that the sequence of chains exhibits cutoff, this means that for any ε ∈ (0, 1),

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

(a) First, let c > 1 and ε ∈ (0, 1
4) fixed. Then, there exists some N = N(ε, c) ∈ N∗

such that for all n ≥ N we have

t
(n)
mix(ε)

t
(n)
mix(1− ε)

< c. (7)

Since 1− ε ≥ 3
4 >

1
4 , we obtain with the preceding inequality and lemma 4.17,

which states that the ε-mixing time is non-increasing in ε, that

1
c
t
(n)
mix(ε) < t

(n)
mix(1− ε) ≤ t

(n)
mix

(
3
4

)
≤ t

(n)
mix(1

4) = t
(n)
mix.

This, in particular, implies that

t
(n)
mix(ε) ≤ ct

(n)
mix
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from which, in turn, follows from the definition of the mixing time and the
non-decreasingness of the worst-case total variation distance shown in lemma
4.8, that for any n ≥ N , 0 < ε < 1

4 ,

0 ≤ d(n)
(
ct

(n)
mix

)
≤ d(n)

(
t
(n)
mix(ε)

)
≤ ε,

from which, by taking the limit with respect to n, we obtain for arbitrary c > 1,

lim
n→∞

d(n)
(
ct

(n)
mix

)
= 0.

(b) Now let c ∈ (0, 1) and ε ∈ (0, 1
4). Set c̃ := 1

c
> 1. Then by statement (7) from

point (a), there is some N = N(ε, c̃) ∈ N∗ such that

t
(n)
mix(ε)

t
(n)
mix(1− ε)

< c̃ = 1
c
⇔ ct

(n)
mix(ε) < t

(n)
mix(1− ε).

Due to ε < 1
4 and the monotonic decrease of t(n)

mix, we get that t(n)
mix(ε) ≥ t

(n)
mix,

and consequently
t
(n)
mix(1− ε) > ct

(n)
mix(ε) ≥ ct

(n)
mix.

Lemma 4.16 implies
d(n)(ct(n)

mix) > 1− ε,

for any ε ∈ (0, 1
4), c ∈ (0, 1). Therefore, by taking the limit over n and using

that our distance is bounded from above by 1, it follows that

lim
n→∞

d(n)(ct(n)
mix) = 1.

This concludes the first implication.

⇐: Let ε ∈ (0, 1) and c ∈ (0, 1), i.e. 1
c
> 1. By precondition, limn→∞ d

(n)(ct(n)
mix) = 1

as well as limn→∞ d
(n)(1

c
t
(n)
mix) = 0. Hence, we can find some N,N ′, N ′′, N ′′′ ∈ N∗

dependent on c, ε such that

(a) For all n ≥ N :

d(n)(ct(n)
mix) > 1− ε 4.16⇒ t

(n)
mix(1− ε) > ct

(n)
mix

(b) For all n ≥ N ′:

d(n)
(

1
c
t
(n)
mix

)
≤ ε

4.16⇒ t
(n)
mix(ε) ≤ 1

c
t
(n)
mix

(c) Using (a) with ε̃ := 1− ε ∈ (0, 1) ensures the existence of some N ′′ ∈ N∗ such
that for any n ≥ N ′′:

t
(n)
mix(ε) = t

(n)
mix(1− ε̃) > ct

(n)
mix
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(d) Using (b) with the same trick used in (c) again guarantees the existence of
some N ′′′ ∈ N∗ such that for any n ≥ N ′′′:

t
(n)
mix(1− ε) = t

(n)
mix(ε̃) ≤ 1

c
t
(n)
mix

From (a) to (d) we can conclude that for all c ∈ (0, 1) and n ≥ max {N,N ′, N ′′, N ′′′},

c2
(c),(d)
≤ t

(n)
mix(ε)

t
(n)
mix(1− ε)

(a),(b)
≤ 1

c2 .

Therefore, by taking the limits c→ 1 and n→∞, we get

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

The preceding lemma provides a very demonstrative interpretation of cutoff, see fig. 1.

1

0

Figure 1: Graphical interpretation of the cutoff phenomenon. For n → ∞ the graph
approximates a step function. This figure is based on [10, p. 262: Fig. 18.1] .

In order to better understand the definitions, we will now see a very simple sequence
of Markov chains showing cutoff:
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Example 4.21. Consider the sequence of Markov chains with state spaces Xn := [[1, n]]
and transition matrices Pn := 1

n
1n×n for any n ∈ N∗, where 1n×n denotes the n × n-

matrix with every entry being 1. This can be interpreted as following: In every step of
the chain, some element from the state space is chosen using uniform distribution on Xn,
completely independent of the state’s current state. It is easy to check that the chain is
both irreducible and aperiodic.

First, fix n ∈ N∗ and k ∈ N∗. Since P k
n = Pn, also Pkx = pk(x, ·) = 1

n
1
t
n for any x ∈ X.

Because of that, the stationary distribution π = 1
n
1
t
n is uniform.

This means that for any starting distribution µ, we attain µP = π after one single
step, hence t(n)

mix(ε) = 1 and also t
(n)
mix(ε)

t
(n)
mix(1−ε)

= 1 for arbitrary ε > 0. By definition 4.19, one
can easily see that this rather trivial sequence of chains exhibits cutoff.

Definition 4.22. We say that the sequence of Markov chains has a pre-cutoff if

sup
0<ε< 1

2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞

We can directly see that the presence of cutoff implies pre-cutoff. Nevertheless, the
converse does not hold: Hubert Lacoin constructed in [8] a class of sequences of Markov
chains, which always exhibits pre-cutoff, but not necessarily cutoff. He is using sequences
of product chains, which were briefly mentioned in the introduction to subsection 4.2.

Definition 4.23. The sequence of Markov chains is said to exhibit cutoff with a (cutoff)-
window of size O(wn) for positive wn = o(t(n)

mix), i.e. limn→∞
wn

t
(n)
mix

= 0, if

lim
α→−∞

lim inf
n→∞

d(n)(t(n)
mix + αwn) = 1 (8)

lim
α→∞

lim sup
n→∞

d(n)(t(n)
mix + αwn) = 0. (9)

There are used many different definitions of cutoff with window, which differ from
above definition of cutoff with window in small details only. Notable examples include
Diaconis’ definition of cutoff, which is given in [3], and the definition used by D’Angeli
and Donno in [5].

Lemma 4.24. Cutoff with a window of size O(wn) implies cutoff.

Proof. We show cutoff by using the equivalent characterisation 4.20:

1. First, let c < 1 and ε > 0 be arbitrary. Because of 8, there exists some A > 0 such
that for all α < −A,

lim inf
n→∞

d(n)(t(n)
mix + αwn) > 1− ε.

Because of this, we can find some N ∈ N∗ such that n ≥ N implies

d(n)(t(n)
mix + αwn) > 1− ε.

Since
t
(n)
mix + αwn

t
(n)
mix

= 1 + α
wn

t
(n)
mix
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and limn→∞
wn

t
(n)
mix

= 0 (by wn = o(t(n)
mix)) and c < 1, we can find N ′ ≥ N such that

for n ≥ N ′,
t
(n)
mix + αwn

t
(n)
mix

> c⇔ ct
(n)
mix < t

(n)
mix + αwn.

We can now apply 4.16, which yields

1 ≥ d(n)(ct(n)
mix) ≥ d(n)(t(n)

mix + αwn) > 1− ε.

Since ε > 0 was chosen arbitrarily, we obtain

lim
n→∞

d(n)(ct(n)
mix) = 1

2. The case c > 1 can be shown analogously.

Ultimately, we want to mention, that a very general notion of cutoff for a family of non-
decreasing non-negative functions can be defined, which is used by Guan-Yu Chen and
Laurent Saloff-Coste in [4, p. 5: Def. 2.1]. This type of cutoff is completely independent
of probabilistic settings.
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5 Conclusion
In the course of this Bachelor’s thesis, we have motivated and formulated the ideas behind
the concept of cutoff in Markov chains in detail. To conclude this paper, we want to
mention that notable examples of Markov chains show cutoff, for example the random
walk on the hypercube, which is presented in [10, p. 266].

In addition, random walks on the symmetric group Sn of n ∈ N∗ elements, which are
used in modelling shuffling of cards, frequently show cutoff. A very basic, yet impractical,
example is the so-called top-to-random shuffle. A more practical shuffle is the riffle shuffle,
described by Gilbert, Shannon and Reeds, which is hence also called GSR-shuffle. These
two shuffles show cutoff, and detailed proofs of their cutoffs can be found in [6, p. 10-15].
This paper, for example, also uses the technique of strong stationary times.
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